министерство просвещения российской федерации

Министерство образования Калининградской области

Неманский муниципальный округ

МБОУ «СОШ пос. Новоколхозное»

УТВЕРЖДЕНО

Директор

Финашина М.А.

Приказ №1 от «30» августа 2023 г.

РАБОЧАЯ ПРОГРАММА

учебного предмета «химия»

(ID 642811)

для обучающихся 8 классов

пос. Новоколхозное 2023 г

І. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа по химии для основной школы составлена на основе: Фундаментального ядра содержания общего образования, Требований к результатам основного общего образования, представленных в Федеральном Государственном Стандарте Общего Образования второго поколения (Приказ Минобрнауки от 17.12.2010г. №1897), Закона РФ «Об образовании в Российской Федерации», а также на основе федеральной рабочей программы воспитания и с учётом концепции преподавания учебного предмета «Химия» в образовательных организациях Российской Федерации, основной образовательной программы основного общего образования МБОУ «СОШ пос. Новоколхозное».

Данная рабочая программа ориентирована на использование учебников по химии и учебно-методических пособий УМК, Гара Н.Н. Химия. Рабочие программы. Предметная линия учебников Г. Е. Рудзитиса, Ф. Г. Фельдмана. 8 – 9 классы

Программа по химии даёт представление о целях, общей стратегии обучения, воспитания и развития обучающихся средствами учебного предмета, устанавливает обязательное предметное содержание, предусматривает распределение его по классам и структурирование по разделам и темам программы по химии, определяет количественные и качественные характеристики содержания, рекомендуемую последовательность изучения химии с учётом межпредметных и внутрипредметных связей, логики учебного процесса, возрастных особенностей обучающихся, определяет возможности предмета для реализации требований к результатам освоения основной образовательной программы на уровне основного общего образования, а также требований к результатам обучения химии на уровне целей изучения предмета и основных видов учебно-познавательной деятельности обучающегося по освоению учебного содержания.

Знание химии служит основой для формирования мировоззрения обучающегося, его представлений о материальном единстве мира, важную роль играют формируемые химией представления о взаимопревращениях энергии и об эволюции веществ в природе, о путях решения глобальных проблем устойчивого развития человечества — сырьевой, энергетической, пищевой и экологической безопасности, проблем здравоохранения.

Изучение химии:

способствует реализации возможностей для саморазвития и формирования культуры личности, её общей и функциональной грамотности;

вносит вклад в формирование мышления и творческих способностей обучающихся, навыков их самостоятельной учебной деятельности, экспериментальных и исследовательских умений, необходимых как в повседневной жизни, так и в профессиональной деятельности;

знакомит со спецификой научного мышления, закладывает основы целостного взгляда на единство природы и человека, является ответственным этапом в формировании естественно-научной грамотности обучающихся;

способствует формированию ценностного отношения к естественно-научным знаниям, к природе, к человеку, вносит свой вклад в экологическое образование обучающихся.

Данные направления в обучении химии обеспечиваются спецификой содержания учебного предмета, который является педагогически адаптированным отражением базовой науки химии на определённом этапе её развития.

Курс химии на уровне основного общего образования ориентирован на освоение обучающимися системы первоначальных понятий химии, основ неорганической химии и некоторых отдельных значимых понятий органической химии.

Структура содержания программы по химии сформирована на основе системного подхода к её изучению. Содержание складывается из системы понятий о химическом элементе и веществе и системы понятий о химической реакции. Обе эти системы структурно организованы по принципу последовательного развития знаний на основе теоретических представлений разного уровня:

- атомно-молекулярного учения как основы всего естествознания;
- Периодического закона Д. И. Менделеева как основного закона химии;
- учения о строении атома и химической связи;
- представлений об электролитической диссоциации веществ в растворах.

Теоретические знания рассматриваются на основе эмпирически полученных и осмысленных фактов, развиваются последовательно от одного уровня к другому, выполняя функции объяснения и прогнозирования свойств, строения и возможностей практического применения и получения изучаемых веществ.

Освоение программы по химии способствует формированию представления о химической составляющей научной картины мира в логике её системной природы, ценностного отношения к научному знанию и методам познания в науке. Изучение химии происходит с привлечением знаний из ранее изученных учебных предметов: «Окружающий мир», «Биология. 5–7 классы» и «Физика. 7 класс».

При изучении химии происходит формирование знаний основ химической науки как области современного естествознания, практической деятельности человека и как одного из компонентов мировой культуры. Задача учебного предмета состоит в формировании системы химических знаний — важнейших фактов, понятий, законов и теоретических положений, доступных обобщений мировоззренческого характера, языка науки, в приобщении к научным методам познания при изучении веществ и химических реакций, в формировании и развитии познавательных умений и их применении в учебнопознавательной и учебно-исследовательской деятельности, освоении правил безопасного обращения с веществами в повседневной жизни.

При изучении химии на уровне основного общего образования важное значение приобрели такие цели, как:

- формирование интеллектуально развитой личности, готовой к самообразованию, сотрудничеству, самостоятельному принятию решений, способной адаптироваться к быстро меняющимся условиям жизни;
- направленность обучения на систематическое приобщение обучающихся к самостоятельной познавательной деятельности, научным методам познания, формирующим мотивацию и развитие способностей к химии;
- обеспечение условий, способствующих приобретению обучающимися опыта разнообразной деятельности, познания и самопознания, ключевых навыков (ключевых компетенций), имеющих универсальное значение для различных видов деятельности;
- формирование общей функциональной и естественно-научной грамотности, в том числе умений объяснять и оценивать явления окружающего мира, используя знания и опыт, полученные при изучении химии, применять их при решении проблем в повседневной жизни и трудовой деятельности;
- формирование у обучающихся гуманистических отношений, понимания ценности химических знаний для выработки экологически целесообразного поведения в быту и

трудовой деятельности в целях сохранения своего здоровья и окружающей природной среды;

– развитие мотивации к обучению, способностей к самоконтролю и самовоспитанию на основе усвоения общечеловеческих ценностей, готовности к осознанному выбору профиля и направленности дальнейшего обучения.

Общее число часов, отведённых для изучения химии на уровне основного общего образования, составляет 136 часов: в 8 классе -68 часов (2 часа в неделю), в 9 классе -68 часов (2 часа в неделю).

II. Общая характеристика учебного предмета химия

В соответствии с Федеральным государственным образовательным стандартом основного общего образования учащиеся должны овладеть такими познавательными учебными действиями, как умение формулировать проблему и гипотезу, ставить цели и задачи, строить планы достижения целей и решения поставленных задач, проводить эксперимент и на его основе делать выводы и умозаключения, представлять их и отстаивать свою точку зрения. Кроме того, учащиеся должны овладеть приемами, связанными с определением понятий: ограничивать их, описывать, характеризовать и сравнивать. Следовательно, при изучении химии в основной школе учащиеся должны овладеть учебными действиями, позволяющими им достичь личностных, предметных и метапредметных образовательных результатов. Особенности содержания обучения химии в основной школе обусловлены спецификой химии как науки и поставленными задачами. Основными проблемами химии являются изучение состава и строения веществ, зависимости ИХ свойств от строения, получение веществ свойствами, исследование закономерностей химических реакций и путей управления ими в целях получения веществ, материалов, энергии.

Вклад учебного предмета в достижение целей основного общего образования и определяет важнейшие содержательные линии предмета:

- «вещество» знание о составе и строении веществ, их свойствах и биологическом значении;
- «химическая реакция» знание о превращениях одних веществ в другие, условиях протекания таких превращений и способах управления реакциями;
- «применение веществ» знание и опыт безопасного обращения с веществами, материалами и процессами, необходимыми в быту и на производстве;
- «язык химии» оперирование системой важнейших химических понятий, знание химической номенклатуры, т.е. их названия (в том числе и тривиальные), владение химической символикой (химическими формулами и уравнениями), а также правила перевода информации с естественного языка на язык химии и обратно.

Поскольку основные содержательные линии школьного курса химии тесно переплетены. в программе содержание представлено не по линиям, а по разделам.

Значительное место в содержании курса отводится химическому эксперименту. Он позволяет сформировать у учащихся специальные предметные умения работать с химическими веществами, выполнять простые химические опыты, научить их безопасному и экологически грамотному обращению с веществами в быту и на производстве.

Практические работы сгруппированы в блоки — химические практикумы, которые служат не только средством закрепления умений и навыков, но и контроля качества их сформированности.

III. Место учебного предмета в учебном плане

В процессе освоения программы курса химии учащиеся овладевают умениями ставить вопросы, наблюдать, объяснять, классифицировать, сравнивать, проводить эксперимент и

интерпретировать выводы на его основе, определять источники химической информации, получать и анализировать ее, а также готовить на этой основе собственный информационный продукт, презентовать его и вести дискуссию.

Программа курса химии для основной школы разрабатывалась с учетом первоначальных представлений, полученных учащимися в начальной школе при изучении окружающего мира. Учебное содержание курса химии включает:

Химия. 8 класс. 68 ч, 2ч в неделю

Учебный год в 8 классе рассчитан на 34 недели

IV. Личностные, метапредметные и предметные результаты освоения учебного предмета

Ценностные ориентиры курса химии в основной школе определяются спецификой химии как науки. Понятие «ценности» включает единство объективного (сам объект) и субъективного (отношение субъекта к объекту), поэтому в качестве ценностных ориентиров химического образования выступают объекты, изучаемые в курсе химии, к которому у обучающихся формируется ценностное отношение. При этом ведущую роль играют познавательные ценности, так как данный учебный предмет входит в группу предметов познавательного цикла, главная цель которых заключается в изучении природы.

Основу познавательных ценностей составляют научные знания, научные методы познания, а ценностные ориентации, формируемые у обучающихся в процессе изучения химии, проявляются:

- в признании ценности научного знания, его практической значимости, достоверности;
- в ценности химических методов исследования живой и неживой природы;
- в понимании сложности и противоречивости самого процесса познания как извечного стремления к Истине.

В качестве объектов ценностей труда и быта выступают творческая созидательная деятельность, здоровый образ жизни, а ценностные ориентации содержания курса химии могут рассматриваться как формирование:

- уважительного отношения к созидательной, творческой деятельности;
- понимания необходимости здорового образа жизни;
- потребности в безусловном выполнении правил безопасного использования веществ в повседневной жизни;
- сознательного выбора будущей профессиональной деятельности.

Курс химии обладает возможностями для формирования коммуникативных ценностей, основу которых составляют процесс общения, грамотная речь, а ценностные ориентации направлены на воспитание у учащихся:

- правильного использования химической терминологии и символики;
- потребности вести диалог, выслушивать мнение оппонента, участвовать в лискуссии:
- способности открыто выражать и аргументированно отстаивать свою точку зрения.

Учебный предмет «Химия», в содержании которого ведущим компонентом являются научные знания и научные методы познания, позволяет не только формировать у учащихся целостную картину мира, но и пробуждать у них эмоционально-ценностное отношение к изучаемому материалу, создавать условия для формирования системы ценностей, определяющей готовность: выбирать определенную направленность действий; действовать определенным образом; оценивать свои действия и действия других людей по определенным ценностным критериям.

Основным результатом познавательного отношения к миру в культуре является установление смысла и значения содержания объектов и явлений природы. Таким образом, познавательная функция учебного предмета «Химия» заключается в способности

его содержания концентрировать в себе как знания о веществах и химических явлениях, так и

познавательные ценности:

отношения к:

химическим знаниям как одному из компонентов культуры человека наряду с другими естественнонаучными знаниями, единой развивающейся системе;

окружающему миру как миру веществ и происходящих с ними явлений;

познавательной деятельности (как теоретической, так и экспериментальной) как источнику знаний;

понимания:

объективности и достоверности знаний о веществах и происходящих с ними явлениях;

сложности и бесконечности процесса познания (на примере истории химических открытий);

действия законов природы и необходимости их учета во всех сферах деятельности человека;

значения химических знаний для решения глобальных проблем человечества (энергетической, сырьевой, продовольственной, здоровья и долголетия человека, технологических аварий, глобальной экологии и др.);

важности научных методов познания (наблюдения, моделирования, эксперимента и др.) мира веществ и реакций.

Расширение сфер человеческой деятельности в современном социуме неизбежно влечет за собой необходимость формирования у учащихся культуры труда и быта при изучении любого учебного предмета, которое невозможно без включения соответствующих *ценностей труда и быта* в содержание учебного предмета «Химия»:

трудовой деятельности как естественной физической и интеллектуальной потребности; труду как творческой деятельности, позволяющей применять знания на практике; *понимания необходимости*:

учета открытых и изученных закономерностей, сведений о веществах и их превращениях в трудовой деятельности;

полной реализации физических и умственных возможностей, знаний, умений, способностей при выполнении конкретного вида трудовой деятельности;

сохранения и поддержания собственного здоровья и здоровья окружающих, в том числе питания с учетом состава и энергетической ценности пищи;

соблюдения правил безопасного использования веществ (лекарственных препаратов, средств бытовой химии, пестицидов, горюче-смазочных материалов и др.) в повседневной жизни;

осознания достижения личного успеха в трудовой деятельности за счет собственной компетентности в соответствии с социальными стандартами и последующим социальным одобрением достижений науки химии и химического производства для развития современного общества.

Опыт эмоционально-ценностных отношений, который учащиеся получают при изучении курса химии в основной школе, способствует выстраиванию ими своей жизненной позиции.

Содержание учебного предмета включает совокупность

нравственных иенностей:

отношения к:

себе (осознание собственного достоинства, чувство общественного долга, дисциплинированность, честность и правдивость, простота и скромность, нетерпимость к несправедливости, признание необходимости самосовершенствования);

другим людям (гуманизм, взаимное уважение между людьми, товарищеская взаимопомощь и требовательность, коллективизм, забота о других людях, активное

реагирование на события федерального, регионального, муниципального уровней, выполнение общественных поручений);

своему труду (добросовестное, ответственное исполнение своих трудовых и учебных обязанностей, развитие творческих начал в трудовой деятельности, признание важности своего труда и результатов труда других людей);

природе (бережное отношение к ее богатству, нетерпимость к нарушениям экологических норм и требований, экологически грамотное отношение к сохранению гидросферы, атмосферы, почвы, биосферы, человеческого организма; оценка действия вопреки законам природы, приводящая к возникновению глобальных проблем); понимания необходимости:

уважительного отношения к достижениям отечественной науки, исследовательской деятельности российских ученых химиков (патриотические чувства).

Образование представлений, формирование понятий в обучении химии происходит в процессе коммуникации с использованием не только естественного языка, но и химических знаков, формул, уравнений химических реакций, обозначающих эти вещества и явления, т. е. химического языка. Таким образом, учебный предмет «Химия» имеет большие возможности для формирования у учащихся коммуникативных ценностей:

негативного отношения к:

нарушению норм языка (естественного и химического) в разных источниках информации (литература, СМИ, Интернет);

засорению речи;

понимания необходимости:

принятия различных средств и приемов коммуникации;

получения информации из различных источников;

аргументированной, критической оценки информации, полученной из различных источников;

сообщения точной и достоверной информации;

ясности, доступности, логичности в зависимости от цели, полноты или краткости изложения информации;

стремления понять смысл обращенной к человеку речи (устной и письменной);

ведения диалога для выявления разных точек зрения на рассматриваемую информацию, выражения личных оценок и суждений, принятия вывода, который формируется в процессе коммуникации;

предъявления свидетельств своей компетентности и квалификации по рассматриваемому вопросу;

уважения, принятия, поддержки существующих традиций и общих норм языка (естественного и химического);

стремления говорить, используя изучаемые химические термины и понятия, номенклатуру неорганических и органических веществ, символы, формулы, молекулярные и ионные уравнения реакций.

Для формирования духовной личности прежде всего необходимо развивать эстетическое отношение человека к действительности, творчество и сотворчество при восприятии эстетических явлений, которыми в курсе химии могут служить: природа (минералы); изделия, изготавливаемые человеком из различных веществ и материалов (ювелирные украшения, памятники архитектуры и т. д.). Химия позволяет также формировать потребность

человека в красоте и деятельности по законам красоты, т. е.

эстетические ценности:

позитивное чувственно-ценностное отношение к:

окружающему миру (красота, совершенство и гармония окружающей природы и космоса в целом);

природному миру веществ и их превращений не только с точки зрения потребителя, а как к источнику прекрасного, гармоничного, красивого, подчиняющегося закономерностям, пропорционального (на примере взаимосвязи строения и свойств атомов и веществ);

выполнению учебных задач как к процессу, доставляющему эстетическое удовольствие (красивое, изящное решение или доказательство, простота, в основе которой лежит гармония);

понимание необходимости:

изображения истины, научных знаний в чувственной форме (например, в произведениях искусства, посвященных научным открытиям, ученым, веществам и их превращениям);

принятия трагического как драматической формы выражения конфликта непримиримых противоположностей, их столкновения (на примере выдающихся научных открытий, конфликта чувства и долга, общества и личности, реальности и идеала).

Таким образом, содержание курса химии основной школы позволяет сформировать у учащихся не только познавательные ценности, но и другие компоненты системы ценностей: труда и быта, коммуникативные, нравственные, эстетические.

Личностными результатами изучения предмета «Химия» в 8 классе являются следующие умения:

- -осознавать единство и целостность окружающего мира, возможности его познаваемости и объяснимости на основе достижений науки;
- -постепенно выстраивать собственное целостное мировоззрение: осознавать потребность и готовность к самообразованию, в том числе и в рамках самостоятельной деятельности вне школы;
- -оценивать жизненные ситуации с точки зрения безопасного образа жизни и сохранения здоровья;
 - -оценивать экологический риск взаимоотношений человека и природы.
- -формировать экологическое мышление: умение оценивать свою деятельность и поступки других людей с точки зрения сохранения окружающей среды гаранта жизни и благополучия людей на Земле.

Метапредметными результатами изучения курса «Химия» является формирование универсальных учебных действий (УУД).

Регулятивные УУД:

- самостоятельно обнаруживать и формулировать учебную проблему, определять цель учебной деятельности;
- -выдвигать версии решения проблемы, осознавать конечный результат, выбирать из предложенных и искать самостоятельно средства достижения цели;
 - -составлять (индивидуально или в группе) план решения проблемы;
- -работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно;
- -в диалоге с учителем совершенствовать самостоятельно выработанные критерии оценки.

Познавательные УУД:

- -анализировать, сравнивать, классифицировать и обобщать факты и явления. Выявлять причины и следствия простых явлений.
- -осуществлять сравнение, классификацию, самостоятельно выбирая основания и критерии для указанных логических операций;
- строить логическое рассуждение, включающее установление причинно-следственных связей.
- -создавать схематические модели с выделением существенных характеристик объекта.
- -составлять тезисы, различные виды планов (простых, сложных и т.п.).
- -преобразовывать информацию из одного вида в другой (таблицу в текст и пр.).

-уметь определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность.

Коммуникативные УУД:

Самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, распределять роли, договариваться друг с другом и т.д.).

Предметными результатами освоения программы по химии являются:

- 1. В познавательной сфере:
- давать определения изученных понятий: вещество (химический элемент, атом, ион, молекула, кристаллическая решетка, вещество, простые и сложные вещества, химическая формула, относительная атомная масса, относительная молекулярная масса, валентность, оксиды, кислоты, основания, соли, амфотерность, индикатор, периодический закон, периодическая система, периодическая таблица, изотопы, химическая электроотрицательность, степень электролит); реакция окисления, химическая (химическое уравнение, генетическая связь, окисление, восстановление, электролитическая диссоциация, скорость химической реакции);
- формулировать периодический закон Д.И.Менделеева и раскрывать его смысл;
- описывать демонстрационные и самостоятельно проведенные эксперименты, используя для этого естественный (русский, родной) язык и язык химии;
- описывать и различать изученные классы неорганических соединений, простые и сложные вещества, химические реакции;
- классифицировать изученные объекты и явления;
- наблюдать демонстрируемые и самостоятельно проводимые опыты, химические реакции, протекающие в природе и в быту;
- делать выводы и умозаключения из наблюдений, изученных химических закономерностей, прогнозировать свойства неизученных веществ по аналогии со свойствами изученных;
- структурировать изученный материал и химическую информацию, полученную из других источников;
- моделировать строение атомов элементов первого третьего периодов, строение простейших молекул.
- 2. В ценностно-ориентационной сфере:
- анализировать и оценивать последствия для окружающей среды бытовой и производственной деятельности человека, связанной с переработкой веществ;
- разъяснять на примерах (приводить примеры, подтверждающие) материальное единство и взаимосвязь компонентов живой и неживой природы и человека как важную часть этого единства;
- строить свое поведение в соответствии с принципами бережного отношения к природе.
- 3. В трудовой сфере:
- планировать и проводить химический эксперимент;
- использовать вещества в соответствии с их предназначением и свойствами, описанными в инструкциях по применению.
- 4. В сфере безопасности жизнедеятельности:
- оказывать первую помощь при отравлениях, ожогах и других травмах, связанных с веществами и лабораторным оборудованием.

Примерные направления проектной деятельности обучающихся.

- 1. Работа с источниками химической информации исторические обзоры становления и развития изученных понятий, теорий, законов; жизнь и деятельность выдающихся ученых-химиков.
- 2. Аналитические обзоры информации по решению определенных научных, технологических, практических проблем.
- 3. Овладение основами химического анализа.
- 4. Овладение основами неорганического синтеза.

V. СОДЕРЖАНИЕ ОБУЧЕНИЯ

8 КЛАСС

Содержание тем учебного предмета

Раздел 1. Основные понятия химии (уровень атомно – молекулярных представлений) (20)

Тема 1. «Первоначальные химические понятия»

Предмет химии. Химия как часть естествознания. Вещества и их свойства. Чистые вещества и смеси. Методы познания в химии: наблюдение, эксперимент. Приемы безопасно работы с оборудованием и веществами. Строение пламени.

Чистые вещества и смеси. Способы очистки веществ: отстаивание, фильтрование, выпаривание, кристаллизация, дистилляция. Физические и химические явления. Химические реакции. Признаки химических реакций и условия возникновения и течения химических реакций.

Атомы, молекулы и ионы. Вещества молекулярного и немолекулярного строения. Кристаллические и аморфные вещества. Кристаллические решетки: ионная, атомная и молекулярная. Простые и сложные вещества. Химический элемент. Металлы и неметаллы. Атомная единица массы. Относительная атомная масса. Язык химии. Знаки химических элементов. Закон постоянства состава вещества. Химические формулы. Относительная молекулярная масса. Качественный и количественный состав вещества. Вычисления по химическим формулам. Массовая доля химического элемента в сложном веществе.

Валентность химических элементов. Определение валентности элементов по формулам бинарных соединений. Составление химических формул бинарных соединений по валентности.

Атомно – молекулярное учение. Закон сохранения массы веществ. Жизнь и деятельность М.В. Ломоносова. Химические уравнения. Типы химических реакций.

Практическая работа №1. Правила техники безопасности при работе в химическом кабинете. Ознакомление с лабораторным оборудованием. Строение пламени.

Практическая работа №2. Очистка загрязнённой поваренной соли.

Демонстрации. Лабораторное оборудование и приемы безопасной работы с ним. Способы очистки веществ: кристаллизация, дистилляция, хроматография. Нагревание сахара. Нагревание парафина. Горение парафина. Взаимодействие растворов: карбоната натрия и соляной кислоты, сульфата меди и гидроксида натрия. Взаимодействие свежеосажденного гидроксида меди с раствором глюкозы при обычных условиях и при нагревании.

Примеры простых и сложных веществ в разных агрегатных состояниях. Шаростержневые модели молекул метана, аммиака, воды, хлороводорода, оксида углерода. Модели кристаллических решеток. Опыты, подтверждающие закон сохранения массы веществ. Химические соединения количеством вещества 1 моль.

Лабораторные опыты. Рассмотрение веществ с различными физическими свойствами. Разделение смеси с помощью магнита. Примеры физических и химических явлений. Реакции, иллюстрирующие основные признаки характерных реакции. Ознакомление с образцами простых веществ (металлы и неметаллы) и сложных веществ, минералов и горных пород.

Расчетные задачи. Вычисление относительной молекулярной массы вещества по формуле. Вычисление массовой доли элемента в химическом соединении. Установление простейшей формулы вещества по массовым долям элементов. Вычисления по химическим уравнениям массы или количества вещества по известной массе или количеству одного из вступающих в реакцию или получающихся веществ.

Раздел 2. Важнейшие представители неорганических веществ (30)

Тема 2. «Воздух. Кислород. Понятие об оксидах» (6)

Кислород. Нахождение в природе. Получение кислорода в лаборатории и промышленности. Физические и химические свойства кислорода. Горение. Оксиды. Применение кислорода. Круговорот кислорода в природе. Озон, аллотропия кислорода. Воздух и его состав. Защита атмосферного воздуха от загрязнений.

Практическая работа №3 Получение и свойства кислорода.

Демонстрации. Физические свойства кислорода. Получение и собирание кислорода методом вытеснения воздуха и воды. Условия возникновения и прекращения горения. Определение состава воздуха.

Лабораторные опыты. Ознакомление с образцами оксидов.

Тема 3. «Водород. Понятие о кислотах» (8)

Водород. Нахождение в природе. Получение водорода в лаборатории и промышленности. Физические и химические свойства водорода. Водород — восстановитель. Меры безопасности при работе с водородом. Применение водорода.

Практическая работа №4. Получение водорода и изучение его свойств.

Демонстрации. Получение водорода в аппарате Кипа, проверка водорода на чистоту, горение водорода, собирание водорода методом вытеснения воздуха и воды.

Лабораторные опыты. Взаимодействие водорода с оксидом меди (11).

Тема 4. «Вода. Растворы. Понятие об основаниях» (5)

Вода. Методы определения состава воды — анализ и синтез. Физические свойства воды. Вода в природе и способы ее очистки. Аэрация воды. Химические свойства воды. Применение воды. Вода — растворитель. Растворимость веществ в воде. Массовая доля растворенного вещества.

Демонстрации. Анализ воды. Синтез воды. Взаимодействие воды с натрием: кальцием, магнием, оксидом кальция, оксидом углерода (4), оксидом фосфора (5) и испытание полученных растворов индикаторами. Знакомство с образцами оксидов, кислот, оснований и солей. Нейтрализация щёлочи кислотой в присутствии индикатора.

Расчётные задачи. Нахождение массовой доли растворённого вещества в растворе. Вычисление массы растворённого вещества и воды для приготовления раствора определённой концентрации.

Тема 5. «Количественные отношения в химии»

Количественные отношения в химии. Количество вещества. Моль. Молярная масса. Закон Авогадро. Молярный объем газов. Относительная плотность газов. Объемные отношения газов при химических реакциях.

Расчетные задачи. Объёмные отношения газов при химических реакциях.

Тема 6. «Важнейшие классы неорганических соединений» (11)

Важнейшие классы неорганических соединений. Оксиды: состав, классификация. Основные и кислотные оксиды. Номенклатура оксидов. Физические и химические свойства, получение и применение оксидов.

Гидроксиды. Классификация гидроксидов. Основания. Состав. Щелочи и нерастворимые основания. Номенклатура. Физические и химические свойства оснований. Реакция нейтрализации. Получение и применение оснований. Амфотерные оксиды и гидроксиды.

Кислоты. Состав. Классификация. Номенклатура. Физические и химические свойства кислот. Ряд напряжения металлов.

Соли. Состав. Классификация. Номенклатура. Физические свойства солей. Растворимость солей в воде. Химические свойства солей. Способы получения солей. Применение солей. Генетическая связь между основными классами неорганических соединений.

Практическая работа №5 «Решение экспериментальных задач по теме «Основные классы неорганических соединений».

Демонстрации. Образцы оксидов, кислот, оснований и солей. Нейтрализация щелочи кислотой в присутствии индикатора.

Лабораторные опыты. Опыты, подтверждающие химические свойства оксидов, кислот, оснований и солей.

Раздел 3. Периодический закон и периодическая система химических элементов Д.И. Менделеева. Строение атома. (15)

Тема 7. «Периодический закон и периодическая система химических элементов Д.И. Менделеева. Строение атома» (7)

Первые попытки классификации химических элементов. Понятие о группах сходных элементов. Естественные семейства щелочных металлов и галогенов. Благородные газы. Периодический закон Д.И.Менделеева. Периодическая система как естественно — научное классификация химических элементов. Табличная форма представления классификации химических элементов. Структура таблицы «Периодическая система химических элементов Д.И. Менделеева» (короткая форма): А- и Б- группы, периоды. Физический смысл порядкового элемента, номера периода, номера группы (для элементов А-групп).

Строение атома: ядро и электронная оболочка. Состав атомных ядер: протоны и нейтроны. Изотопы. Заряд атомного ядра, массовое число, относительная атомная масса. Современная формулировка понятия «химический элемент».

Электронная оболочка атома: понятие об энергетическом уровне (электронном слое), его ёмкости. Заполнение электронных слоев у атомов элементов первого – третьего периодов. Современная формулировка периодического закона.

Значение периодического закона. Научные достижения Д.И. Менделеева: исправление относительных атомных масс, предсказание существования неоткрытых элементов, перестановки химических элементов в периодической системе. Жизнь и деятельность Д.И. Менделеева.

Практическая работа №6 «Изучение кислотно-основных свойств гидроксидов, образованных химическими элементами 3 периода.

Демонстрации. Физические свойства щелочных металлов. Взаимодействие оксидов натрия, магния, фосфора, серы с водой, исследование свойств полученных продуктов. Взаимодействие натрия и калия с водой. Физические свойства галогенов. Взаимодействие алюминия с хлором, бромом и йодом.

Лабораторные опыты. Вытеснение галогенами друг друга из растворов солей. Взаимодействие гидроксида цинка с растворами кислот и щелочей.

Тема 8. «Строение вещества. Химическая связь» (8)

Электроотрицательность химических элементов. Основные виды химической связи: ковалентная неполярная, ковалентная полярная, ионная. Валентность элементов в свете электронной теории. Степень окисления. Правила определения степеней окисления элементов.

Демонстрации. Модели кристаллических решеток ковалентных и ионных соединений. Сопоставление физико-химических свойств соединений с ковалентными и ионными связями.

Предметными результатами изучения предмета «Химия» являются следующие умения:

Раздел 1: «Первоначальные химические понятия»

Обучающийся

-научится:

- Раскрывать смысл основных понятий: вещество, химический элемент, относительная атомная и молекулярная массы;
- называть химические элементы;
- вычислять относительную молекулярную и молярную массы веществ, а также массовую долю химического элемента в соединениях для оценки их практической значимости;

- соблюдать правила техники безопасности при проведении наблюдений и опытов
- приводить примеры химических процессов в природе;
- изображать сущность химических реакций с помощью химических уравнений;
- объяснять различные способы классификации химических реакций;
- проводить химические опыты и эксперименты и объяснять их результаты;
- классифицировать химические элементы на металлы, неметаллы, инертные элементы (газы) для осознания важности упорядоченности научных знаний;
- вычислять количество вещества, объем или массу по количеству вещества;

-получит возможность научиться:

- определять роль различных веществ в природе и технике;
- характеризовать методы химической науки (наблюдение, сравнение, эксперимент, измерение) и их роль в познании природы;
- понимать роль химических процессов, протекающих в природе;
- грамотно обращаться с веществами в повседневной жизни
- развивать коммуникативную компетентность, используя средства устной и письменной коммуникации при работе с текстами учебника и дополнительной литературой, справочными таблицами;
- раскрывать смысл основных понятий: растворы, электролит и неэлектролит, электролитическая диссоциация; окислитель и восстановитель, окисление и восстановление
- объяснять сущность реакций ионного обмена;
- классифицировать оксиды и основания по свойствам, кислоты и соли по составу;
- составлять уравнения электролитической диссоциации кислот, щелочей, солей; полные и сокращённые ионные уравнения реакций обмена; уравнения окислительновосстановительных реакций;
- составлять уравнения реакций, соответствующих последовательности («цепочке») превращений неорганических веществ различных классов;
- называть общие химические свойства, характерные для каждого из классов неорганических веществ: кислот, оснований, солей;
- приводить примеры реакций, подтверждающих химические свойства неорганических веществ: оксидов, кислот, оснований и солей;
- составлять окислительно-восстановительный баланс (для изученных реакций) по предложенным схемам реакций и определять вещество-окислитель и вещество-восстановитель в окислительно-восстановительных реакциях;
- проводить лабораторные опыты, подтверждающие химические свойства основных классов неорганических веществ;
- составлять молекулярные и полные ионные уравнения по сокращённым ионным уравнениям;
- приводить примеры реакций, подтверждающих существование взаимосвязи между основными классами неорганических веществ;
- использовать приобретённые ключевые компетентности при выполнении исследовательских проектов по изучению свойств, способов получения и распознавания вешеств:
- выявлять существование генетической взаимосвязи между веществами в ряду: простое вещество оксид гидроксид соль.

Раздел 3. Периодический закон и периодическая система химических элементов Д.И. Менделеева. Строение атома

научится:

• Раскрывать смысл основных понятий: атом, изотопы, химическая связь электроотрицательность;

- Объяснять физический смысл порядкового номера элемента, номера группы, номера периода;
- составлять схемы строения атомов первых 20 элементов периодической системы Д.И.Менделеева;
- различать виды химической связи: ионную, ковалентную полярную, ковалентную неполярную и металлическую;
- изображать электронно-ионные формулы веществ, образованных химическими связями разного вида.

получит возможность научиться:

- осознавать значение теоретических знаний для практической деятельности человека;
- описывать изученные объекты как системы, применяя логику системного анализа Раздел 3. Строение вещества.

научится:

- определять степень окисления элемента в соединениях;
- определять принадлежность веществ к определенному классу неорганических веществ;
- различать экспериментально кислоты и щёлочи, пользуясь индикаторами; осознавать необходимость соблюдения мер безопасности при обращении с кислотами и щелочами.
- выявлять зависимость свойств веществ от строения их кристаллических решёток: ионных, атомных, молекулярных, металлических;
- приготовлять растворы с определённой массовой долей растворённого вещества;
- составлять формулы неорганических соединений по степеням окисления элементов, а также зарядам ионов, указанным в таблице растворимости кислот, оснований и солей;

получит возможность научиться:

• использовать приобретенные знания и умения в практической деятельности и повседневной жизни для приготовления растворов заданной концентрации.

Общие естественно-научные понятия: научный факт, гипотеза, теория, закон, анализ, синтез, классификация, периодичность, наблюдение, эксперимент, моделирование, измерение, модель, явление.

Физика: материя, атом, электрон, протон, нейтрон, ион, нуклид, изотопы, радиоактивность, молекула, электрический заряд, вещество, тело, объём, агрегатное состояние вещества, газ, физические величины, единицы измерения, космос, планеты, звёзды, Солнце.

Биология: фотосинтез, дыхание, биосфера.

География: атмосфера, гидросфера, минералы, горные породы, полезные ископаемые, топливо, водные ресурсы.

МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ УЧИТЕЛЯ

Химия: уроки в 8 классе: пособие для учителя /Н. Н. Гара

ЦИФРОВЫЕ ОБРАЗОВАТЕЛЬНЫЕ РЕСУРСЫ И РЕСУРСЫ СЕТИ ИНТЕРНЕТ

http://school-collection.edu.ru http://fcior.edu.ru http://college.ru/himiya/